Electric moulding of dispersed lipid nanotubes into a nanofluidic device

نویسندگان

  • Hiroshi Frusawa
  • Tatsuhiko Manabe
  • Eri Kagiyama
  • Ken Hirano
  • Naohiro Kameta
  • Mitsutoshi Masuda
  • Toshimi Shimizu
چکیده

Hydrophilic nanotubes formed by lipid molecules have potential applications as platforms for chemical or biological events occurring in an attolitre volume inside a hollow cylinder. Here, we have integrated the lipid nanotubes (LNTs) by applying an AC electric field via plug-in electrode needles placed above a substrate. The off-chip assembly method has the on-demand adjustability of an electrode configuration, enabling the dispersed LNT to be electrically moulded into a separate film of parallel LNT arrays in one-step. The fluorescence resonance energy transfer technique as well as the digital microscopy visualised the overall filling of gold nanoparticles up to the inner capacity of an LNT film by capillary action, thereby showing the potential of this flexible film for use as a high-throughput nanofluidic device where not only is the endo-signalling and product in each LNT multiplied but also the encapsulated objects are efficiently transported and reacted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial Nanofluidic Structures for Medicine and Engineering Bacterial nanotubes Bacterial Nanofluidic Structures for Medicine and Engineering

2010 Wil re microscopic, single-celled organisms that utilize a variety of nanofluidic structures. One of the best known and widely used nanofluidic structures that are derived from bacteria is the a-hemolysin pore. This pore, which self-assembles in lipid bilayers, has been used for a wide variety of sensing applications, most notably, DNA sensing. Synthetic pores drilled in a wide variety of ...

متن کامل

Nanofluidic diodes based on nanotube heterojunctions.

The mechanism of tuning charge transport in electronic devices has recently been implemented into the nanofluidic field for the active control of ion transport in nanoscale channels/pores. Here we report the first synthesis of longitudinal heterostructured SiO(2)/Al(2)O(3) nanotubes. The ionic transport through these nanotube heterojunctions exhibits clear current rectification, a signature of ...

متن کامل

Polarity switching and transient responses in single nanotube nanofluidic transistors.

We report the integration of inorganic nanotubes into metal-oxide-solution field effect transistors (FETs) which exhibit rapid field effect modulation of ionic conductance. Surface functionalization, analogous to doping in semiconductors, can switch the nanofluidic transistors from p-type to ambipolar and n-type field effect transistors. Transient study reveals the kinetics of field effect modu...

متن کامل

DNA translocation in inorganic nanotubes.

Inorganic nanotubes were successfully integrated with microfluidic systems to create nanofluidic devices for single DNA molecule sensing. Inorganic nanotubes are unique in their high aspect ratio and exhibit translocation characteristics in which the DNA is fully stretched. Transient changes of ionic current indicate DNA translocation events. A transition from current decrease to current enhanc...

متن کامل

Inorganic nanotubes: a novel platform for nanofluidics.

Templating approaches are being developed for the synthesis of inorganic nanotubes, a novel platform for nanofluidics. Single crystalline semiconductor GaN nanotubes have been synthesized using an epitaxial casting method. The partial thermal oxidation of silicon nanowires leads to the synthesis of silica nanotubes. The dimension of these nanotubes can be precisely controlled during the templat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013